

Liberté Égalité Fraternité

Decision-Making and Skill-based architectures for Autonomous Mobile Robots

Alexandre Albore

ONERA, DTIS, Université de Toulouse, France

14 May 2024, Reasoning and Learning for Autonomous Agents: Agents Vic Autumn Symposium

Ce document est la propriété de l'ONERA. Il ne peut être communiqué à des tiers et/ou reproduit sans l'autorisation préalable écrite de l'ONERA, et son contenu ne peut être divulgué. This document and the information contained herin is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA. Introduction •000

Robot Language

Skillset Verification

Decision-making

Applications

Conclusion

Context

- Ever-increasing robotic applications demand
- Robotic approaches to **autonomy**
- Need of dependability
- Need for tools and methods

Introduction	
0000	

Skillset Verification

Decision-making

Applications

Conclusion

Strengthening trust in autonomous systems

Complex robotic systems

Trust and dependability

- Complex tasks and difficult environments
- Exogenous events (HMI, uncertainty, partial information)

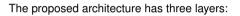
Dependability

- Specification made easy
- Verification and validation made easy
- Implementation made easy

Introduction	
0000	

A Robotic 3-layered architecture

Skillset Verification


Decision-making

Applications

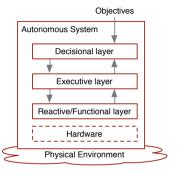
Conclusion

Objectives

Fig: 3-layers architecture¹

- The decision layer: hosts the mission controller and sets the goals to achieve
- ② The executive layer: the middleware interface of the system capabilities
- 3 The functional layer: the on-board control procedures

¹F. Ingrand and M. Ghallab. "Deliberation for autonomous robots: A survey". In: Artificial Intelligence 247 (2017), pp. 10–44



Introduction	Robot Language	Skillse
0000	000000	00

Dependable Skill-based executive layer

t Verification

Applications

• Executive layer:

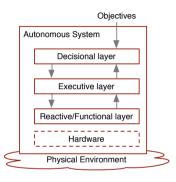
- translation of decision actions into executable commands
- abstraction of the functional layer
- "task achieving behaviors"², "procedures"³, "performance profiles"4, "skills"567
- Skills represent functions/services available in the functional laver

⁶ Bodney Brooks, "A robust layered control system for a mobile robot", In: IEEE Journal on Robotics and Automation 2.1 (1986), pp. 14–23.

- ⁷Felix Ingrand et al. "PRS: A high Level Supervision and Control Language for Autonomous Mobile Robots". In: *ICRA*. Minneapolis, MN, USA, 1996.
- ⁸Ronen Brafman et al. "Performance level profiles: A formal language for describing the expected performance of functional modules". In: IROS. South Korea, 2016.
- ⁹Colin Archibald and Emil Petriu. "Skills-oriented robot programming". In: Int. Conf. on Intelligent Autonomous Systems. Pittsburgh, PA, USA, 1993.

¹⁰Simon Bøgh et al. "Does your robot have skills?" In: International Symposium on Robotics. Taipei, Taiwan, 2012.

¹¹ Franz Steinmetz and Roman Weitschat. "Skill Parametrization Approaches and Skill Architecture for Human-Robot Interaction". In: CASE. Fort Worth, TX, USA, 2016.



ntroduction	Robot La
000	0000

Dependable Skill-based executive layer

Skillset Verification

Applications

• Executive layer:

- translation of decision actions into executable commands
- abstraction of the functional layer
- "task achieving behaviors"², "procedures"³, "performance profiles"4, "skills"567
- Skills represent functions/services available in the functional laver
- **Model-based** design of the skill-based executive laver
- Tools/processes to support a **dependability** analysis ~~~

¹¹ Franz Steinmetz and Roman Weitschat. "Skill Parametrization Approaches and Skill Architecture for Human-Robot Interaction". In: CASE. Fort Worth, TX, USA, 2016.

⁶ Bodney Brooks, "A robust layered control system for a mobile robot", In: IEEE Journal on Robotics and Automation 2.1 (1986), pp. 14–23.

⁷Felix Ingrand et al. "PRS: A high Level Supervision and Control Language for Autonomous Mobile Robots". In: *ICRA*. Minneapolis, MN, USA, 1996.

⁸Ronen Brafman et al. "Performance level profiles: A formal language for describing the expected performance of functional modules". In: IROS. South Korea, 2016.

⁹Colin Archibald and Emil Petriu. "Skills-oriented robot programming". In: Int. Conf. on Intelligent Autonomous Systems. Pittsburgh, PA, USA, 1993.

¹⁰Simon Bøgh et al. "Does your robot have skills?" In: International Symposium on Robotics. Taipei, Taiwan, 2012.

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	00	0000	00000
Skill Defin	itions				

- Skills represent functions available in the functional layer
- Skills are modular and participate to the mission design
- Skills that share relations (dependencies, exclusion, ...) are grouped into a Skillset
- These relations are modeled as Resources
- The correct execution of each skillset is managed by a Skillset Manager

¹²Charles Lesire et al. "Formalization of Robot Skills with Descriptive and Operational Models". In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA, 2020

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	00	0000	00000
Skill Defin	itions				

- Skills represent functions available in the functional layer
- Skills are modular and participate to the mission design
- Skills that share relations (dependencies, exclusion, ...) are grouped into a Skillset
- These relations are modeled as Resources
- The correct execution of each skillset is managed by a Skillset Manager

Skillset formulation

Skillsets are described using a custom *Robot-language*¹².

¹²Charles Lesire et al. "Formalization of Robot Skills with Descriptive and Operational Models". In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA, 2020

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	00	0000	00000
Skillset fo	ormulation				

Skillset is built upon three types of elements:

data skillset shared data

resource shared resources within the skillset

event external means to interact with resources

skill robot skill definition

skillset name	ə {		
data	{ } //	skillset	data definition
resource	{ } //	skillset	resources definition
event	{ } //	skillset	events definition
skill	{ } //	skillset	skills definition
}			

Introc	luction
000	0

Skillset Verification

Decision-making

Applications

Conclusior

Skill formulation

Robot Skill

Input input data

Output ouput data

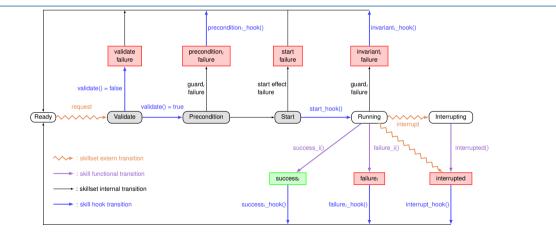
Failure

Precond. preconditions on resources

Start effects on start

Invariant resources invariants

Progress progress of the running skill Terminate of the skill: effets & postcondition Interrupt interrupting the skill


```
input {...}
output {...}
precondition {...}
start ...
invariant {...}
progress {...}
interrupt ...
failure ...
```

skill skill name {

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	00	0000	00000

Skill Execution Model state-machine

The skillset semantics

Introduction	
0000	

Skills Design

Robot Language

Skillset Verification

Decision-making

Applications

Conclusion

Goals

• "Safe" robots

- clear/unambiguous specification
- specification verification/analyses
- real execution conforming to specification

Abstraction

- different robots can share skills
- don't rewrite code
- ease deployment and reconfiguration

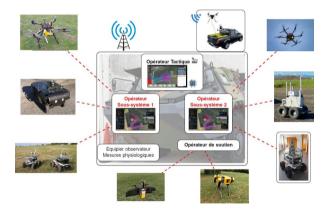
Principe

- "Formal" specification
 - "formal" language: the Robot-language
 - standard interface for the decision layer
 - various possible verifications and analyses
- ROS 2 code generator
 - don't introduce bugs
 - ensure that the real execution conforms to the model

Introduction	
0000	

Skillset Verification

Decision-making


Applications

Conclusion

Cohoma Challenge – Robotic platforms

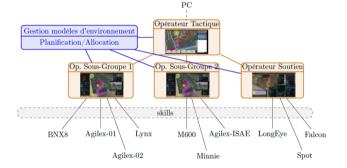
10 platforms

- 2 multi-rotor drones
- 1 captive drone
- 1 convertible drone
- 5 ground robots on wheels
- 1 quadruped robot

Introduction	R
0000	C

Skillset Verification

Decision-making


Applications

Conclusion

Cohoma Challenge – Robotic platforms

- 2 multi-rotor drones
- 1 captive drone
- 1 convertible drone
- 5 ground robots on wheels
- 1 quadruped robot

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	00	0000	00000
Code Gene	ration				

- Generation of a Skillset Manager Template
- ... as a ROS 2 node (and messages)
- All the logical behaviour is generated as:
 - resource management (guards, effects, events)
 - skills FSM (inputs/outputs, invariants, states)
- The developer still has to:
 - implement the validate_hook if they want to check something before starting
 - implement the actual skill execution in relation with the functional layer in between the start_hook and the success or failure terminations

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	0000000	•0	00	0000	00000
Resolution	n Techniques				

Assisting the design

Verifying the correctness of the skillset models using formal methods.

¹⁴Gabriela Catalán Medina et al. "A skill fault model for autonomous systems". In: *IEEE/ACM International Workshop on Robotics Software Engineering (RoSE)*. Pittsburgh, USA, 2022.

¹³Leonardo De Moura and Nikolaj Bjørner. "Z3: An efficient SMT solver". In: International conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	0000000	•0	00	0000	00000
Resolution Te	chniques				

Assisting the design

Verifying the correctness of the skillset models using formal methods.

- Formalism: encoding the formulæ in Satisfaction Modulo Theory (SMT)
 - Resources modeled as state machines
 - Guards (resource logical formulæ)
 - Effects (resource transitions)
- Solver used for inconsistencies check: Z3¹³

¹⁴Gabriela Catalán Medina et al. "A skill fault model for autonomous systems". In: IEEE/ACM International Workshop on Robotics Software Engineering (RoSE). Pittsburgh, USA, 2022.

¹³Leonardo De Moura and Nikolaj Bjørner. "Z3: An efficient SMT solver". In: International conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

Introduction	
0000	

Skillset Verification

Decision-making

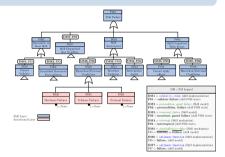
Applications

Conclusion

Assisting the design

Resolution Techniques

Verifying the correctness of the skillset models using formal methods.


- Formalism: encoding the formulæ in Satisfaction Modulo Theory (SMT)
 - Resources modeled as state machines
 - Guards (resource logical formulæ)
 - Effects (resource transitions)
- Solver used for inconsistencies check: Z3¹³

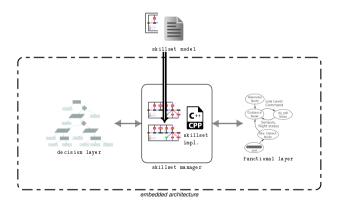
Fault Tree Analysis¹⁴

- Hazards might be combined using logic symbols
- Qualitative analysis can be performed on the skill fault tree.

¹⁴Gabriela Catalán Medina et al. "A skill fault model for autonomous systems". In: IEEE/ACM International Workshop on Robotics Software Engineering (RoSE). Pittsburgh, USA, 2022.

¹³Leonardo De Moura and Nikolaj Bjørner. "Z3: An efficient SMT solver". In: International conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

Introduction	Robot Language
0000	000000

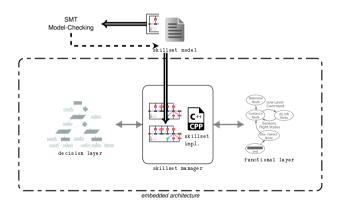

Skillset Verification

Decision-making

Applications

Conclusion

Dependable Skill-based executive layer


Introduction	Robot Language	Skillset Verification
0000	000000	0.

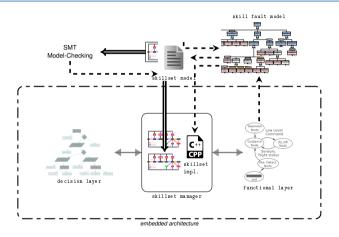
Decision-makin
00

Applications

Conclusior

Dependable Skill-based executive layer

Introduction	Robot Language
0000	0000000


Skillset Verification

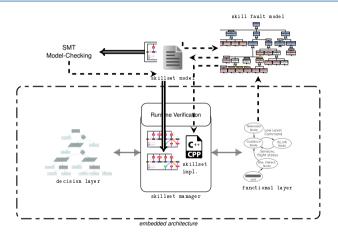
Decision-making

Applications

Conclusion

Dependable Skill-based executive layer

Introduction	Robot Language
0000	000000


Skillset Verification

Decision-making

Applications

Conclusion

Dependable Skill-based executive layer

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	•0	0000	00000
Decision lay	er				

The decision-making layer is agnostic of the actual functional layer

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	0000000	00	•0	0000	00000
Decision lay	er				

The decision-making layer is agnostic of the actual functional layer

Thus it can be implemented in different ways, e.g.

- Behaviour trees
- Automated planning
- Actors managing goal cycles
- etc.

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	•0	0000	00000
Decision la	yer				

The decision-making layer is agnostic of the actual functional layer

Thus it can be implemented in different ways, e.g.

- Behaviour trees
- Automated planning
- Actors managing goal cycles
- etc.

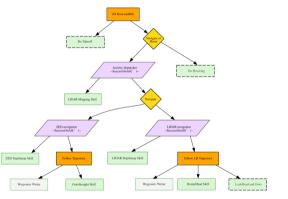
Some examples are coming...

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	0000000	00	0.	0000	00000
Behaviour	^r Trees				

- Need to adapt in case of contingency
- E.g. for a UAV mission
 - React to a sensor failure using other on-board sensors and an alternative processing
 - Adapt the mission depending on exogenous events

oduction	Robot Language	Sł
00	000000	0

Skillset Verification


Decision-making

Applications

Conclusior

Behaviour Trees

- Need to adapt in case of contingency
- E.g. for a UAV mission
 - React to a sensor failure using other on-board sensors and an alternative processing
 - Adapt the mission depending on exogenous events
- Behaviour trees allow to specify nominal and degraded plans

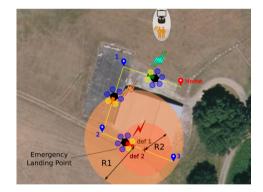
Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	0000000	00	00	● 000	00000
UAVs Missio	n Reconfiguration				

- 3D Mapping of a storage building/infrastructure inspection
- BVLOS scenario (Beyond Visual Line of Sight of the teleoperator)¹⁶

¹⁶Alexandre Albore et al. "Skill-Based Architecture Development for Online Mission Reconfiguration and Failure Management". In: *IEEE/ACM International Workshop on Robotics Software Engineering (RoSE)*. Madrid, Spain, 2021

Introduction	
0000	

Skillset Verification


Decision-making

Applications

Conclusion

UAVs Mission Reconfiguration

- 3D Mapping of a storage building/infrastructure inspection
- BVLOS scenario (Beyond Visual Line of Sight of the teleoperator)¹⁶
- Contingency: Communication Loss
- Reconfiguration:
 - React to a sensor failure using other on-board sensors and an alternative processing
 - Adapt the mission depending on exogenous events
- more concretely:
 - adapt bandwidth
 - 2 land if communication lost

¹⁶Alexandre Albore et al. "Skill-Based Architecture Development for Online Mission Reconfiguration and Failure Management". In: *IEEE/ACM International Workshop on Robotics Software Engineering (RoSE)*. Madrid, Spain, 2021

In	tro	dι	lCl	ior	n
C	0		2		

Skillset Verification

Decision-making

Applications

Conclusion

Earth Observation Satellites (EOS)

- An EOS is a spacecraft designed for gathering information about the Earth from orbit
- They point to targets and then take images with a sensor (visible, IR, radio, etc.)
- The orbit determines which areas are visible at a given time
- Observation tasks depend on the environment not known in advance, e.g. cloud cover, etc.
- Platform constraints (Attitude control, energy consumption...)
- New customer's requests

In	tro	dι	lCl	ior	n
C	0		2		

Skillset Verification

Decision-making

Applications

Conclusion

Earth Observation Satellites (EOS)

- An EOS is a spacecraft designed for gathering information about the Earth from orbit
- They point to targets and then take images with a sensor (visible, IR, radio, etc.)
- The orbit determines which areas are visible at a given time
- Observation tasks depend on the environment not known in advance, e.g. cloud cover, etc.
- Platform constraints (Attitude control, energy consumption...)
- New customer's requests

Need to embed some functions on-board in order to exploit data only available on-board

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	00	0000	00000
A decision	layer based on A	Actors			

The decision layer is built upon the OARA framework¹⁷ (https://onera-robot-skills.gitlab.io):

- Architectural framework to design and manage the deliberative reasoning of an autonomous system.
- Based on a hierarchy of actors managing planning and acting through goal decomposition.

¹⁸Charles Lesire et al. "A Hierarchical Deliberative Architecture Framework based on Goal Decomposition". In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022). Kyoto, Japan, 2022.

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	0000000	00	00	0000	00000
A decision layer based on Actors					

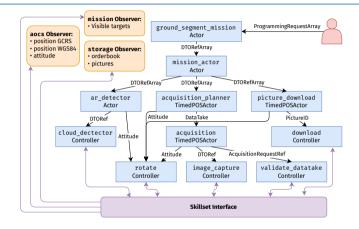
The decision layer is built upon the OARA framework¹⁷(https://onera-robot-skills.gitlab.io):

- Architectural framework to design and manage the deliberative reasoning of an autonomous system.
- Based on a hierarchy of actors managing planning and acting through goal decomposition.

Derived from:

- Actors ¹⁸: Reasoning components that manage planning and acting of a specific task.
- The concept of goal lifecycle¹⁹
- The Hierarchical Task Network (HTN) model and the Partial-Order Planning approach.

²⁰Mark Roberts et al. "Goal Reasoning, Planning, and Acting with ACTOR SIM, The Actor Simulator". In: Annual Conference on Advances in Cognitive Systems. Evanston, IL, USA, 2016.

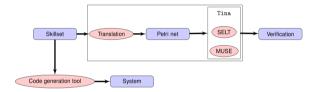


¹⁸Charles Lesire et al. "A Hierarchical Deliberative Architecture Framework based on Goal Decomposition". In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022). Kyoto, Japan, 2022.

¹⁹Malik Ghallab et al. "The actor's view of automated planning and acting: A position paper". In: Artificial Intelligence 288 (2014), pp. 1–17.

Introduction	Robot Language	Skillset Verification	Decision-making	Applications
0000	000000	00	00	0000

Decision layer architecture for EOS


²¹ Alexandre Albore and Rafael Bailon-Ruiz. "A Hierarchical Temporal Mission Controller for an Autonomous Earth Observation Satellite". In: *Multi-Agent Systems for Space Applications Workshop (AAMAS)*. Auckland, NZ, 2024.

Introduction	Robot Language	Skillset Verification	Decision-making	Applications	Conclusion
0000	000000	00	00	0000	00000
Operation					
Conclusior	1S				

Skills composition and verification²²

- Skills can be composed
- and translated to Petri Nets
- and verified with adapted tools (Tina suite²³)

²⁴Bernard Berthomieu et al. "The tool TINA – construction of abstract state spaces for Petri nets and time Petri nets". In: International journal of production research 42.14 (2004), pp. 2741–2756.

²³Baptiste Pelletier et al. "SkiNet, A Petri Net Generation Tool for the Verification of Skillset-based Autonomous Systems". In: International Workshop on Formal Methods for Autonomous Systems. Berlin, Germany, 2022.

Introduction	
0000	

Conclusions

Robot Language

Skillset Verification

Decision-making

Applications

Conclusion

Warehouse robotic management

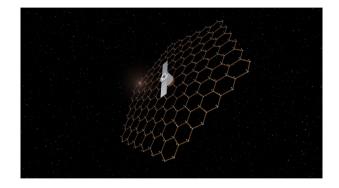
- Scaling up challenge (\sim 800 10k autonomous UGVs)
- Increasing resilience
- Moving from a centralized architecture to a distributed one
- Advancing on the MAPF front

Introduction
0000

Conclusions

Robot Language

Skillset Verification


Decision-making

Applications

Conclusion

On-orbit satellite assembly

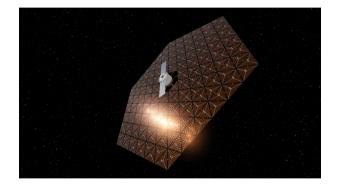
- **Crawling robots** moving on a truss beam lattice structure
- Automated planning-based approach²⁵
- Advancing on the MAPF front

²⁵Alexandre Albore and Mathieu Rognant. "Integrated Modeling and Planning for On-Orbit Assembly of Large Space Structures with Mobile Crawling Robots". In: Multi-Agent Systems for Space Applications Workshop (AAMAS). Auckland, NZ, 2024.

Introduction
0000

Skillset Verification

Decision-making


Applications

Conclusion

Conclusions

On-orbit satellite assembly

- Crawling robots moving on a truss beam lattice structure
- Automated planning-based approach²⁵
- Advancing on the MAPF front

²⁵Alexandre Albore and Mathieu Rognant. "Integrated Modeling and Planning for On-Orbit Assembly of Large Space Structures with Mobile Crawling Robots". In: Multi-Agent Systems for Space Applications Workshop (AAMAS). Auckland, NZ, 2024.

Introduction	
0000	

Conclusions

Robot Language

Skillset Verification

Decision-making

Applications

Conclusion

Mission Planning for EOS

- Need to produce plans for a defined horizon, steering the satellite towards observation targets
 - · Time component of actions is critical
 - Expressiveness of Hierarchical Task Network Planning \rightarrow HDDL 2.1 ²⁶

²⁶Damien Pellier et al. "HDDL 2.1: Towards Defining a Formalism and a Semantics for Temporal HTN Planning". In: *Proceedings of the International Workshop of Hierarchical Planning (ICAPS)*. Prague, 2023.

In	rod		ion	
0	00	0		

Skillset Verification

Decision-making

Applications

Conclusion

Thank you!

Melbourne, 2024: A. Albore – Decision-Making and Skill-based architectures for Autonomous 24/26 Mobile Robots